
Combining Theory Generation and Model
Checking for Security Protocol Analysis

Nicholas J. Hopper Sanjit A. Seshia Jeannette M. Wing

January 2000

CMU-CS-00-107

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 1.5213

Abstract

This paper reviews two relatively new tools for automated formal analyis of security protocols.
One applies the formal methods technique of model checking to the task of protocol analysis, while
the other utilizes the method of theory generation, which borrows from both model checking and
automated theorem proving. For purposes of comparison, the tools are both applied to a suite of
sample protocols with known flaws, including the protocol used in an earlier study to provide a
baseline. We then suggest a heuristic for combining the two approaches to provide a more complete
analysis than either approach can provide alone.

The second author was supported in part by a National Defense Science and Engineering Graduate Fellowship.
This research is sponsored in part by the the National Science Foundation under Grant No. CCR-9523972 and

the Department of Defense under Award Number MDA904-99-C-5020.
The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-

standing any copyright annotation thereon. The views and conclusions contained in this document are those of
the authors, and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Department of Defense or the U.S. Government.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited
DTIC QTTJALii'* ÜaU^GiüB 3

Keywords: formal methods, security, authentication protocols, model checking, belief logics, the-
ory generation, Brutus, Revere

1 Introduction

Security protocols based on cryptographic primitives are used today to protect computer systems
and network transactions from malicious attacks. These protocols have been known to be notori-
ously hard to design due to their complexity. Many subtle attacks have been demonstrated that
are difficult to catch by manual analysis alone. There is therefore a need for formal automated

tools to assist in the design of security protocols.
Many researchers have recently applied automated and semi-automated formal techniques to

analyze security protocols. These tools fall into roughly two classes : those based on theorem
proving (e.g., [4, 10, 6]) and those based on model checking (e.g., [8, 9, 7]). Tools differ in the
degree of automation and expressiveness; often more automation is traded off against reduced
expressiveness. Moreover, the assumptions made in modelling protocols make some tools better
suited than others in catching certain classes of errors. These differences indicate that we might
find tools that complement each other.

1.1 Model Checking and Theory Generation

In this paper, we compare two recently developed automated tools: BRUTUS [8], which is a model
checker, and RVChecker, which is based on Kindred's theory-generation approach [5].

BRUTUS is a model checker specialized to analyze security protocols, with a built-in model
of the adversary. It uses standard state space analysis techniques to check if the model satisfies
the specification. If it does not, then BRUTUS comes up with a counterexample showing where
the specification breaks. Although model checking is almost entirely "push-button" in nature,
BRUTUS sometimes comes up short in that the protocol might be far too complex to handle due
to state-space explosion, or the counter-example might be too complicated to understand exactly
what assumption breaks. Even if these do not happen, it is possible that the protocol breaks only
when a certain configuration of multiple runs occurs, and there is no way to automatically figure
out which runs are important for analyzing properties of interest.

RVChecker is a theory generation tool based on REVERE [6] which is based on belief logics.
The core idea in this approach is to produce a finite representation of the set of all the facts
derivable from a protocol specification. Verifying a particular property of interest then simply
becomes testing for set membership. The advantage of this approach lies in its automation, and
in the high level handling of security protocol properties, thereby helping the designer fix incorrect
assumptions about the system and its environment. The obvious disadvantage of this approach lies
in the difficulty of seeing how failure of certain assumptions can translate into a real attack on the
system. For a fairly complicated interaction between assumptions, it might be very difficult for a
human designer to figure out exactly what is going wrong.

The strengths and weaknesses of these two approaches suggest ways of combination. In the
remainder of this paper, we study their performance on a suite of two protocols with known flaws.
We compare the performance of the tools on these two protocols. Based on this, we suggest a new
method of analysis based on a complementary combination of the two tools.

1.2 The Protocol Suite

We ran each of BRUTUS and RVChecker on a suite of two protocols, both of which are known
to have flaws. This suite includes the Tatebayeshi-Matsuzaki-Newman (TMN) protocol used by
Kemmerer, Meadows and Millen to compare three analysis tools - the Interrogator, InaJo and
the NRL Protocol Analyzer [4]. Using this protocol thus serves to provide a baseline comparison

between the two tools investigated here and the three systems investigated in that article. Our
suite also includes the buggy namestamping protocol presented by Dolev and Yao (DY) in their
paper on algebra-based analysis of security protocols [3]. The chosen protocols help to illustrate
the relative strengths and weaknesses of the two verification approaches. The known attack on the
Dolev-Yao protocol is achieved by syntactic manipulation of the messages, which indicates that a
model checking approach that explores all possible operations on messages might catch this bug.
On the other hand, in the TMN protocol, parties perform key exchange based on beliefs about the
authenticity of the other party, so it seems that a belief logic based tool such as RVChecker might

catch errors in this protocol.

1.2.1 Tatabayeshi-Matsuzaki-Newman Key Exchange Protocol

The Tatabayeshi-Matsuzaki-Newman (TMN) protocol for key exchange [11], features a server S

with a public key and two network nodes A and B who wish to exchange a session key through the

server. The protocol consists of four messages:

1. A—>S

2. S—>B

3. B^S

4. S —> A

[S.A.B.{Ra}Ks]

[B.S]

[S.B.A.{Rb}Ks]

[A.S.B.Ra © Rb]

In the above notation, A —> S : [S.A.B.{Ra}Ks] means that the composite message constructed
by concatenating S, A, B and Ra encrypted under Ks is sent by principal A to principal S. Rx
denotes a large random number generated by principal A', and © denotes bitwise exclusive-or.

After a run of this protocol, A and B use Rb as a session key. The protocol falls victim to several
attacks. One attack results from properties of the public-key and symmetric encryption algorithms
used (RSA and XOR), in which a second set of users can capture some of the messages from the
first protocol instance and trick the server into revealing the key. A second class of attacks results
from the fact that no authentication takes place in the protocol, so it is possible for an intruder to
masquerade as any of the other principals in the protocol and disrupt the network by, for example
learning the session keys of principals or convincing A that he is securely communicating with B
when in fact he is communicating with Z. These attacks are more clearly outlined in our analyses

in Sections 2 and 3.

1.2.2 Dolev-Yao Namestamp Protocol

Dolev and Yao [3] introduce several simple message transfer protocols with the intent of proving
them secure or insecure. All of the protocols involve the transmission of a message M from party A
to party B. The protocol we will analyze here, which has a multiple-run attack, has two messages

(where Kx indicates the public key of principal A):

A—+B : [A.{{M}Kb.A}Kh.B]

B^A : [B.{{M}Ka,B}Ka,A}

This protocol is intended to securely transfer message M from A to B, but the double-encryption
(added to another protocol which Dolev and Yao prove secure against message discovery) allows a

three-run attack [3]:

1. Z listens to the first run of the protocol, remembering {{M}Ka.B}Ka from 5's response.

2. Z initiates the protocol with A, sending

{Z.{{{M}Ka.B}Ka.Z}Ka.A}

3. .4 responds, sending Z:
[A.{{{M}Ka.B}Kz.A}Kz.Z]

4. Z now knows {M}K(I, SO he initiates another run of the protocol with .4, sending:

[Z.{{M}Ka.Z}Ka.A]

5. .4 responds with:

6. Z now has the message M.

[A.{{M}Kz.A}Kz.Z]

Section 2 describes BRUTUS and the analysis of the two protocols using BRUTUS. Section 3
describes RVChecker and the analysis performed with it. In Section 4 we discuss the results of
our analyses and in Section 5 we propose a heuristic to combine the two approaches. Finally, in
Section 6 we offer concluding remarks and suggest avenues for further research.

2 BRUTUS

BRUTUS is a model checker specialized for analyzing security and electronic commerce protocols [8].
Like most model checkers, BRUTUS is based on an operational description of the behavior of par-
ticipating agents (in the protocol), based on which, a suitable modal logic is defined. Properties
expressed in this logic can then be checked against the model using state space analysis. However,
unlike a "general-purpose" model checker in which the user must specify a finite state model of the
intruder, BRUTUS has a built-in model of the intruder.

In this section, we first give a brief overview of how BRUTUS models a protocol and how it
defines and checks properties of interest. Then, we use BRUTUS to model and analyze the TMN

and Dolev-Yao protocols.

2.1 The Model

BRUTUS specifies that the protocol must follow a particular model. While this allows us to formalize
the protocol description and check the corresponding logic in a straightforward way, we also lose

some expressiveness in the process.
The set M of possible messages in the BRUTUS model of protocols can be defined inductively

as follows :

1. If a £ A,a € M, where A is the set of atomic messages, i.e., keys, principal names, nonces

or data messages.

2. If ???i € M and m2 G M, then mi.m2 <E M (pairing)

3. If m e M and key k € A, then {m}k € M (encryption)

In BRUTUS, the principals need to be explicitly modeled in the protocol, but the intruder need not.
BRUTUS instead defines a derivability relation, "H", which captures how the intruder can derive a

message from some initial set of information I.

1. If m e I then 7 h m.

2. If 7 h 77?4 and 7 h ?772 then 7 h mi • ?77.2. (pairing)

3. If 7 h ?77x • ?772 then 7 h mi and 7 h ?7?,2. (projection)

4. If 7 h 777, and 7 h Ar for key A% then 7 h {m}^. (encryption)

5. If 7 h {m}fc and 7 h A-1 then 7 h m. (decryption)

7 denotes the closure of 7 under application of the above rules.
A protocol is modeled as an asynchronous composition of communicating processes that model

the honest principals as well as the intruder. The intruder process can eavesdrop on all commu-
nication and can interfere by dropping, changing or adding new messages in any way; thus the
communication channel can be thought of as passing through the intruder. The model is made
finite by imposing a bound on the number of times ("sessions") a principal is allowed to participate

in the protocol.
The formal model of an individual principal in a single session is called an instance. Each

instance H of an honest principal is modeled as a 5-tuple (N, S, I, B, P) where:

•

•

•

N £ names is the name of the principal.

S is a unique instance ID for this instance.

B: vars(N) —Y M is a set of bindings for vars(N), the set of variables appearing in principal
N, which are bound for a particular instance as it receives messages.

I C M is the set of messages known to the principal executing the instance S.

P is a process description given as a sequence of actions to be performed. These actions
include the pre-defined actions send and receive , as well as user defined internal actions
such as begin-response and end-response, internal actions can be used to keep track of
the internal state of an instance.

The intruder, Z, is not bound to follow the protocol and the intruder process neither includes a
sequence of actions Pz nor a set of bindings Bz- Instead, at any time, the intruder can receive any
message or it can send any message it can generate from its set of known messages Iz-

The states of all processes put together form the global state of the system. Let S be the
set of global states of the system. The transition relation for the system can be written as —> C
SxSxixMxS where E is the set of global states, 5 again is the set of instance IDs, A is the
set of action names (which includes send and receive), and M is the set of all possible messages.

A transition of the system from state a to state a' can be represented as a —-> a'.

2.2 The Logic

The property of interest is specified in a first order logic with finite quantification and the past-time
temporal operator.

We now give the syntax of the logic. Atomic propositions in the logic are instance IDs, in-
stance variables, message constants and variables, and combinations of these as per the message
construction rules defined in Section 2.1. A well formed formula (wff) in the logic is defined as

follows:

• if / is an atomic proposition, then / is a wff.

• if / is a. wff, then -1/ is a wff.

• if /1 and f2 are wffs, then f\ A /2 is a, wff.

• if / is a wff and .? is an instance variable, then 3s. f is a wff.

• if / is a wff, then Op/ is a wff. !

The semantics of wffs in the logic are defined over the trace of states and actions of the system
TV = <70ai<7i .. .<7n, and can be given bv the following recursive definition of the satisfaction relation

• (71-, i) (= mi = ???2 iff 0-,-(7??i) = cr 1(111-2), i.e., the interpretations of the two messages in the ?'th
state must be the same.

• The formula (71-, i) (= .s Knows m iff 07(77?) € Ij for some instance Hj in 07 such that Sj — s

■A-r,
• (TT, i) |= s A m for some user defined action A iff <r,-_i -^—>■' 07.

The usual semantics of \= for boolean and temporal connectives apply.
Now, if we need to model check a given property p defined in the above logic, we define a fixpoint

operator corresponding to the temporal operator used. The state space can also be encoded as a
boolean expression. The fixpoint operator is then applied to a suitable composition of the state
space expression and the property formula. When the computation reaches a fixed point, we can
check whether the property holds for our system. If the property does not hold, the resulting
formula will encode a trace which shows how the protocol can be broken.

A detailed treatment of model checking can be found in the book by Clarke, Grumberg and

Peled [2].

2.3 Analysis

We now describe how we used BRUTUS to model and analyze the TMN and Dolev-Yao protocols.
Each analysis of a property described in this section ran in under a minute on an Intel Pentium
II 300 MHz machine running Linux. BRUTUS identified some of the flaws in both the protocols
under consideration, however, it did not identify all of the known flaws due to limitations in its
expressiveness.

In the analysis that follows, / stands for the intruder and all other letters stand for honest
principals or trusted servers.

:As in propositional temporal logic, Op/ is true at state a,, if 3 some prior state a3,j < i where / holds.

2.3.1 Dolev-Yao analysis

The initiating and responding instances of each honest principal are modelled as shown below (each

corresponds to one session):

INITIATOR = internal ("begin - initiate", b)

send (a, b, {{M}Kb, a}Kb)

receive (6, a, {{M}Ka, b}Ka)

internal ("end - initiate", b)

RESPONDER = receive(a,6, {{M}Kb,a}Kb)

internal ("begin - respond", a)

send(b,a,{{M}Ka,b}Ka)

internal ("ewe? - respond", a)

In the above descriptions, a and b represent the names of the two communicating parties.

We checked the following classes of properties:

• Secrecy: The following property was checked:

-.(/ Knows M)

This property comes out to be true when we model less than three sessions of the initiator
(A) and less than two sessions of the responder (B). But in a case when this does not hold,
where there are three sessions of A and one of B, BRUTUS finds the exact same attack as is
described in [3]. Moreover, we find alternative ways of attacking the protocol if the relative
number of sessions of A and B are changed. One such variation occurs when B listens for
two sessions and A initiates using one session; the intruder is able to obtain the message as

shown in Figure 1.

• Authentication: To check authentication, we checked the following two properties :

(1) Ma.{a internal ("end - initiate", B) =>

(3Sb.(Sb.P = J3)A Op (Sb.P internal ("end - respond", a)))}

(2) Vb.{b internal ("end - respond", A) =>

(3Sa.(Sa,P = A) A Op (Sa.P internal ("begin - initiate", b)))}

We claim these properties are "authentication" properties - the first claims that if A finishes
initiating a message to a honest principal B, then there is a session in which B responded to
this message at some earlier point of time. The second claims that if B finished responding
to a message apparently from A, then it was indeed A who initiated the send of that message
in some session at some time in the past. Note that these are rather weak conditions of
authenticity which rely on nametags attached to messages rather than something more secure.
This arises from the fact that there are no signatures or shared secrets involved in the protocol.
Properties of this kind have also been referred to as correspondence properties by Woo and

Lam [12].

Intruder I B

inh(B)

send(A,B,Kb(A,Kb(M)))

intercepts message
send(I,B,Kb(I,Kb(A,Kb(M))

recv(B,I,Ki(B,Ki(A,Kb(M)))

send(I,B,Kb(I,Kb(M))

recv(B,I,Ki(B,Ki(M))>

knows M !

recv(I,B,Kb(I,Kb(A,Kb(M))))

send(B,I,Ki(B,Ki(A,Kb(M))))

recv(I,B,Kb(I,Kb(M)))

send(B,I,Ki(B,Ki(M)))

Figure 1: Counterexample showing secrecy flaw in Dolev-Yao

For a single run of A and B, both properties check out to be true. This happens because /
is unable to get M through a, replay attack, and so if A or B get the message they expected,
it must have been legally generated.

However, if either .4 or B is allowed to have more than one session, then the intruder I can
replay the message and make sure that A or B completes a session thinking that the message
which originated from I actually came from an honest principal. One such attack is shown in
Figure 2. Here we have the same model as in the previous attack, viz., two sessions of B and
initiation by A. In this case. A thinks that B is talking to her, while B thinks he is talking
to /, so the authentication property does not hold.

Intruder I B

init(B)

send(A,B,Kb(A,Kb(M)))

intercepts message

send(I,B ,Kb(I,Kb(A,Kb(M))'

recv(B,I,Ki(B,Ki(A,Kb(M)))

send(I,B,Kb(I,Kb(M))

recv(B,I,Ki(B,Ki(M))>

knows M !

• send(B,A,Ka(B,Ka(M)))

recv(I,B,Kb(I,Kb(A,Kb(M))))

send(B,I,Ki(B,Ki(A,Kb(M))))

recv(I,B,Kb(I,Kb(M)))

send(B,I,Ki(B,Ki(M)))

recv(B,A,Ka(B,Ka(M)))

Figure 2: Counterexample showing authentication flaw in Dolev-Yao

Since BRUTUS considers all principals to be honest, we cannot express honesty properties in the
protocol. This is a limitation in the expressiveness of the specification logic.

2.3.2 TMN analysis

In TMN, we have three honest principals: the initiator A, the server S, and the responder B. We

model these as shown below:

INITIATOR = internal ("begin - initiate", B)

send (A,S,B,{RA}KS)

receive (s, A, b, {Rb}Ra)

internal ("end- initiate",b)

RESPONDER = received. B, a)

internal ("begin - respond", a)

send(_B, s, a, {RB}KS)

internal("en(7 - respond", a)

SERVER = receive(a, S, b, {Ra}Ks)

internal("begin - initiate", b)

send(6, S, a)

receive(6, S, a, {Rb}h's)

internal ("end - initiate", b)

internal ("begin — respond", a)

send(S, a, b, {Ra}Rb)

internal("enrf — respond", a)

In the above model, small letters (such as a) are used in place of principal names (such as A) to
indicate that the party represented by the letter p may not be the principal P, but some other

party Q playing the role of P.
The current version of BRUTUS requires secret keys generated by A and B to be represented

as symmetric keys, with a symmetric key for I. This representation allows 7's key to replace that
of A or B wherever I replaces A or B. However, representing secret keys in this manner ties the
key to the principal name for a given message. Thus, if I attempts an attack in which it replaces a
principal's name with its own (masquerading as that principal), it also effectively changes the key,

often rendering the attack ineffective.
We checked the following classes of properties:

• Secrecy: We want to check if the shared secret RB remains a secret from the Intruder /. More
formally, we want to check the following two properties:

(1) : -i(7 Knows RB)

(2) : -.(/ Knows RB) A -.(/ Knows RA)

The first property means that I cannot read messages passed between A and B The second
property means that in addition, I cannot masquerade as S while communicating with A.

BRUTUS finds both properties to be false. First, if the intruder is allowed to take on the role
of the server (i.e., the name "I" can replace "Sr in messages), then a very simple attack is
possible, as shown in Figure 3. If we assume that the intruder cannot masquerade as the

A I S I B

init(B)

send(A,S,B,(Ra)Ks)

■** recv(A,S,B,(Ra)Ks)

send(I,B,A)
-*- recv(I,B,A)

knows((Ra)Ks) .._ T . ,_, .„.. -- send(B,I,A,(Rb)Ki)

recv(B,I,A,(Rb)Ki)

knows(Rb)

^ ■ send(I,S,A,(Ri)Ks)

recv(I,S,A,(Ri)Ks)

_-___ send(S,A,I)

recv(S,A,I)
send(A,S,I,(Ra)Ks)

"""""-^ recv(A,S,I,(Ra)Ks)

send(S,I,A,(Ra)Ri)

recv(S,I,A,(Ra)Ri)

knows(Ra)

Figure 3: Counterexample 1 showing secrecy flaw in TMN

server, then we can still find an attack. With a single session of S we are only able to find
an attack that allows I to discover RB, but with two sessions of S, I can also find RA- This
latter attack is shown in Figure 4.

• Authentication: We check the same authentication properties as for the DY protocol. How-
ever, in this case, BRUTUS deems both properties to be true. This is because it is not possible
for BRUTUS to represent the secret key of / with the principal name of B in the same message
as discussed earlier.

• Multiple Intruder Collusion: Simmons describes an attack on the TMN protocol (described
in [11]) in which the homomorphic property of the keys is used. In essence, the key used
in a single valid run of the protocol is replayed by two colluding intruders (who could be
two different sessions of the same intruder). Since this attack depends on the homomorphic
property of keys, which cannot be expressed in BRUTUS, BRUTUS fails to catch this flaw.

3 RVChecker

RVChecker is a protocol analysis tool inspired by the tool REVERE developed by Kindred [6].
REVERE features two new techniques: theory generation and the RV logic, an extended BAN-style
belief logic [1]. Combining these features results in a tool that is fully automatic; given a protocol
specification no further action is required by the user to analyze the protocol. Whereas REVERE is
written in SML, the paper's first author developed RVChecker entirely in Java, so it is also portable
to any platform for which there is a JVM available.

9

A I

init(B)

send(A,S,B,(Ra)Ks)

^~"~*" recv(A,S,B,(Ra)Ks)

send(S,B,I) ■

B

knows((Ra)Ks)

recv(B,S,I,(Rb)Ks)

knows((Rb)_Ks)

■ send(I,S,B,(Ri)Ks)

recv(S,B,I)

• send(B,S,I,(Rb)Ks)

recv(I,S,B,(Ri)Ks)

■ send(S,BJ)

recv(S,BJ)
send(B,S,I,(Rb)Ks)

">>,>*>» recv(B,S,I,(Rb)Ks)

send(S,I,B,(Rb)Ri)
recv(S,I,B,(Rb)Ri)

knows(Rb)
■ send(I,S,A,(Ri)Ks)

recv(I,S,A,(Ri)Ks)
——— send(S,A,I)

recv(S,A,I)
send(A,S,I,(Ra)Ks)

**"'»"■ recv(A,S,I,(Ra)Ks)

send(S,I,A,(Ra)Ri)

"^~~*" recv(S,I,A,(Ra)Ri)
knows(Ra)

Figure 4: Counterexample 2 showing secrecy flaw in TMN

3.1 Theory Generation

RVChecker employs Kindred and Wing's theory generation for reasoning about small theories in
limited logics [5]. Theory generation is a syntactic method of theorem proving based on a saturation
approach. The concept is to produce a finite representation of a (possibly infinite) theory generated

by a set of rules and assumptions.
Their approach divides the rules of a logic into "shrinking" and "growing" rules (as decided by

any well-defined measure) and repeatedly applies only the shrinking rules, essentially guaranteeing
that the process will come to a halt. Then to test whether a specific formula is a consequence of
the rules and assumptions, a backward-chaining search over the growing rules is applied, which
will also guarantee termination. The sufficient condition for termination provided by Kindred and
Wing is the restriction that a shrinking rule must still shrink even when all of its premises that can
be met by the conclusion of a growing rule are removed.

A consequence of this condition is that given a set of rules and a candidate measure, it is
possible to automate the process of checking a logic for termination under theory generation. This
allows the development of a general-purpose theory generation algorithm that can automatically
prove any judgement of any logic that satisfies these termination conditions. Both REVERE and
RVChecker implement this algorithm, formally described in Kindred's thesis [6].

10

In addition to being fully automatic, this algorithm has the potential to be quite fast; in his the-
sis, Kindred gives figures for the analysis of several security protocols under several different logics;
the longest analysis took REVERE 50 seconds to complete on a 500 MHz processor. RVChecker was
not designed with processing speed as a primary consideration; the protocols analyzed here took
on the order of 5 minutes to check on a 500 MHz Pentium III.

3.2 RV logic

RV is a belief logic developed by Kindred [6] with a core similar to the Burrows-Abadi-Needham
(BAN) logic of authentication [1]. The innovations of RV lie in its rules for responsibility and a
technique of explicit interpretations. The belief rules of RV are essentially the same as those of BAN
and will not be discussed here; the responsibility properties attempt to account for the possibility
of irresponsible behavior on the part of the principals of the protocol, while explicit interpretations
represent an attempt to address the dangerous idealization step necessary to analyze a protocol
using the BAN logic. In this section we will describe RV rules in terms of the symbols listed in
Table 1, for consistency with the notation of Kindred [6]. (So, for example, the first rule in Figure 5

reads 'If P sees M, then P sees M'".)

Notation Meaning

P <d M P sees M

P |« M P savs M
P |~ M P said M
P \=M P believes M

Q^R K is a shared key between Q and R
K ^ K is Q's public key

{*}K Message X, encrypted under key K

Q^R Y is a. shared secret between Q and R
P controls A P has jurisdiction over A"

U(A') A" is "fresh", that is, "random'" or "new'"

Table 1: RV symbols

3.2.1 Explicit Interpretation

BAN-style protocol analysis necessarily involves generating idealized versions of the messages in a
protocol and doing analysis on these idealized protocols rather than the concrete protocols intended.
The risk is that the idealization might contain hidden assumptions about the relative safety of a
message; BAN fails to consider other possible interpretations of the same concrete message.

RV addresses this by introducing a syntax for concrete protocol messages; the protocol is ana-
lyzed using the actual concrete messages intended for implementation, along with "interpretation"
rules that allow for the explicit idealization of the protocol. Kindred severely restricts these inter-
pretation rules to prevent invalidating the rules of the logic [6].

An interpretation rule must match one of the patterns shown in Figure 5. In addition, the
concrete message M cannot contain any variables specific to one instance of the protocol, and may
not contain any functions other than concatenation; the idealized meaning M' may not contain
protocol instance variables or the encrypt function: and no concrete message may match more

11

P<M P |= Q |~ M P\=Q M

P < M' P\=Q\~ M' P |= Q |« M'

Figure 5: RV Interpretation rule patterns. Here M matches all or part of a concrete message, while

M' represents its intended meaning

than one interpretation rule for a given protocol. This approach allows the explicit statement of
how the protocol is being idealized, and placing these restrictions on the interpretation rules means
that they can be automatically checked, pointing out dubious idealizations to the user.

Since nonces are not always used merely for freshness or randomness, but are also used to stand
in for longer pieces of information, RV also allows nonce-binding operations to be included in the
premises of the interpretation rules; we do not use this feature of the logic for either of the protocols

evaluated here.

3.2.2 Responsibility

The RV logic also introduces the notion of responsibility in protocol analysis. Here the concept
is that RV analysis allows one to determine whether or not the principals involved in a protocol
are acting responsibly, as defined by two properties: honesty and secrecy. Roughly speaking, the
honesty property requires that a principal believe any possible interpretation of a message he sends,
while the secrecy property requires a principal to believe that it is safe for any intruder to see all
of the data sent in a concrete message. RV derives these properties through the legit and maysee
operators and rules described here.

Original interpretation rule Corresponding legit rule

P\=Q\tz M

P |= Q |« M'
Q = M' Q |= signed (M, Ms, P, Q)

Q |== legit(Ms)

P \=Q |~ M
P |= Q |~ M'

Q = M' Q |= signed(M, Ms,P,Q)
Q |= legit (Ms)

P < M
P < M'

Q \= M'
Q |= legit (M)

Table 2: Honesty rules corresponding to protocol message interpretation rules

The legit operator works in conjunction with the interpretation rules introduced in the previous
section; when analyzing a protocol, for each interpretation rule, a. corresponding rule is introduced,
according to the proper rule from Table 2. The RV logic also has rules that allow one to derive that
the encryption of a legitimate or honest message is also honest, and the concatenation of two honest
messages is honest. It introduces a concept of signed messages, with the idea that any message
encrypted under a private or shared key or combined with a shared secret is signed. Then to check
the honesty of a principal P in connection with a given concrete message M, it suffices to derive

12

A' P< h Q K\ = A"-1

P |= Q maysee A' P \= Q maysee Y P |= Q maysee A"2

P<Q^R P«Q = R

P <l Q maysee Y P<Q<Y P \= Q maysee A'

P \=Q maysee Y P \= Q maysee Y P |= Q maysee {X}K

P |= Q maysee (A', Y P<&Q P \= Z maysee A"

P |= Q maysee A" P \= Z maysee A" P |= Q maysee X

P \=Q maysee A' P |=H> Q P \= Q maysee A" P |= Q maysee Y

P |= Z maysee {A"}/v- P \=Q maysee [X.Y

P \=Q maysee A' P \= R maysee A P |= Q <—> R

P |= Z maysee {A'}A-

Figure 6: RV's maysee rules

P |= legit (M) [6].
The maysee operator communicates that it is acceptable for a. given principal to see a. piece of

information. RV's maysee rules specify that if information is public, then any principal believes
that, any other principal may see it; a principal is allowed to see anything he or she has already
seen before; a principal may see anything that an intruder may see. and so on. For a complete list
of RV's maysee rules, see Figure 6. To check secrecy properties in RV, the protocol analyst adds
a. principal 7" (the Intruder) and checks that for each message M and sender S, S |= I maysee M

[6].

3.3 RVChecker Protocol Analysis

Protocol analysis with RV and theory generation involves several phases:

1. A specification is supplied, consisting of a set of messages between principals, a set of inter-
pretation rules conforming to the restrictions listed above, a list of the principals involved, a
set of belief goals for the protocol, and a set of initial assumptions about the beliefs of the

principals involved.

2. Theory generation is applied to the initial assumptions to generate T0, the consequence closure
of the assumptions under RV.

3. For each message AA- with sender 5; and recipient i?,-, the formula. £,<M; is added and theory
generation is re-applied to compute the theory Tj.

4. Secrecy is checked: 5, |= I maysee A/, G Ti-\.

13

5. Honesty is checked: S; |= legit (M,) G T,-_i.

6. For each belief goal g, check that g £ Tn, where n is the number of messages.

In this section, we give the results of protocol analysis for the selected suite.
RVChecker identified flaws in both the DY and TMN protocols; here we present the analysis

of each. The suite nicely points out some weaknesses of the RV approach, as well as its strengths;
for example, we were able to find flaws through an inability to meet belief goals, but discovering
these flaws required extensive familiarity with the RV logic to isolate the necessary (or flawed)
additional assumptions. In addition, knowing that some dubious assumptions are necessary does
not necessarily indicate how an attacker can take advantage of these assumptions - while in these
cases we knew of the attacks a priori, in actual analysis using RVChecker on other protocols this

will not in general be the case.

3.3.1 Dolev-Yao analysis

RVChecker can quickly identify one fault in the DY protocol: it provides no authentication. One
might assume that desirable belief goals for DY would be "B believes it is A who says M," and "A
believes B says that it is A who says M" (formally, A \= B |ra (A |« M)), however, since there
is no signature and no previous shared secret of any sort, this belief-oriented set of goals cannot
be achieved. In any case, the main goal of the protocol as introduced by Dolev and Yao is secrecy,
so the belief goals can be weakened to the "seeing" goals "B sees that A said M" and ".4 sees
that B sees A said M", while we analyze the honesty and secrecy properties of the protocol. Even
these further weakened goals cannot be reached without breaking an interpretation rule restriction:
because RV and RVChecker do not allow compositional rules, there is no way for a principal to
derive that when she sees [A'.{V}A'] and has the key K, then she sees X and Y together in the
same message. Thus our interpretation rules include encryption and specify protocol principals (so
that we may connect the encryption key with the principal who may decrypt it):

B<[{X}Kb.Q] A<[{X}Ka.Q]
B<Q\~X A<{Q<(A\~X))

With these interpretation rules and the proper public key belief set:

. i Ka . . i Kb T-,
A |=H> A A |=i-» B
n I Ka A n i Kb j-,
B |=i->- A B |=i-> B

RVChecker finds that the "seeing" goals are satisfied.
The honesty goals require additional assumptions to be met. The first required assumption is

that A \= A |~ M, which is necessary to assume because only the recipient sees the message in

RVChecker's analysis. We also require the assumptions:

A |= legit {A) A |= legit (B)
B |= legit (A) B |= legit [B)

in order to get around the fact that namestamps rather than keys are used to provide authentication.
With these assumptions, it is easy to derive the appropriate legit belief for the first message.
After the first message, B < A |~ M can be used to derive

B 1= B < A |~ M

14

which allows us to derive the legit properties for the second message.
The secrecy goals are also met, requiring only two assumptions: A \= B maysee M, which

seems obvious since A is sending AI to B; and B |= A maysee AI, which seems reasonable once B
sees that A |~ AI. With these assumptions, RYChecker easily derives that the secrecy properties

hold.
The DY protocol, however, was designed to have a secrecy flaw; thus our results represent either

a shortcoming of RV*s secrecy rules (meaning they are unable to account totally for multiple-run
attacks) or an invalid assumption. The assumption that B \= A maysee AI allows the secrecy
check to succeed for the second message; without it, B cannot derive that / maysee {AI}iK-a. Thus
it might be tempting to conclude that this assumption is invalid; however, Dolev and Yao also
give an example of a protocol with perfect secrecy, for which this assumption is required for RY to
derive the secrecy properties. This shortcoming is a result of a conscious design decision by RY's
creator which results in a conservative approach to secrecy; thus sometimes these rules will lead
to the conclusion that a secrecy flaw is present when in fact none is. Here the secrecy flaw comes
both from lack of authentication and double encryption, but RY's rules do not allow us to isolate
the double encryption as a source of the flaw.

3.3.2 TMN analysis

Through analysis with RYChecker we were able to find belief and responsibility errors in TMN.
Since TMN is a key-exchange protocol, we start with the belief goals. Generally, we would like to
have both A and B believe that Rb is a shared key between them, and further we would like both
principals to believe that the other principal shares their belief, resulting in the goals:

. A Rb r, r> I A Rb n
A |= A <—> B B |= A <—► B

A\=B\=AAB B \= A |E.4ÄB

Since there is no direct authentication in this protocol, however, the bottom two goals are impos-
sible, so we will settle for the goals:

A i A Rb y-, r-, i . Rb ,-, r, I . Rb j-,
A |= A <—> B B \= A <—> B S |= A <—> B

We also have a problem in that, as specified in Section 1.2.1, any interpretation rule which matches
message 1 or 3 will match both, yet they have different interpretations; to solve this problem we
add tags REQ and RSP to these messages (which simulate the state that 5 would have to maintain in
the concrete protocol). If we try to write the interpretation rules now, we find one more problem:
as with DY, RY is unable to derive that if a principal sees [A~.{y}/V-], then that principal sees
(A', Y). Thus in our idealization step we have already identified one potential attack: an attacker
can change the names in the messages being passed around without changing the keys; thus he
could change a. message from A to S to say [S.A.I....] rather than [S.A.B]. To fix this problem,
we encrypt the entire contents of messages 1 and 3 rather than just the keys:

A —► S : {[REQ.S.A.B.Ra]}Ks

B —► S : {[KSP.S.B.A.Rb]}Ka

Then our interpretation rules for these messages are relatively straightforward:

P<t [REQ.P.Q.R.K] P< [RSP.P.Q.R.K]

P<iP^Q P<Q|KQÄä

15

However, since the specification of TMN calls for bitwise exclusive-or encryption in the final mes-
sage, we cannot modify it to encrypt the entire contents. Instead, we will break the restriction that
an interpretation rule cannot include any protocol instance variables, which is reasonable because

in any single run, A only expects to get a key for one person:

P |= S |« A'

P |= S |« P Ä B

Note that in this rule, ,5' refers to a protocol constant, the server S.
To check our belief goals, we require several assumptions. Besides the jurisdiction assumptions

(involving which principals are allowed to control the keys used by other principlas) necessary, the

interesting assumptions are
. I . Ra r,

A |= A <—► 5

and
B |= A <—> B

since A and B are responsible for generating these keys. The second of these assumptions satisfies
our second belief goal. To satisfy our first belief goal, however, we require an additional assumption,

which points out a second attack. For A \= A i—> B, we must infer the following sub-goals:

DJ,

A |= S controls A f—■> B

A |= S |« A i—> B

The first sub-goal is the obvious jurisdiction assumption. The second sub-goal can be derived
through our interpretation rule, if we can infer A |= ,5* |« Rb. This inference requires the assumption
A |= tt(i?&); that is, A must assume that Rb is freshly generated. In fact, this points to the attack
found by Simmons [11] in which two collaborating intruders use keys which are not fresh to find

A's key.
fib

The final belief goal is also a source of difficulty: to derive S \= A i—> B, we need to infer that,

for some P:
S \= P controls A <—> B

S |= P |« A Ä B

Given the definition of the protocol, it is a reasonable assumption that P = B, since B generates Rb.
fib

We end up with an authentication problem, however: while we can derive that S <B |« A i—> B,
the protocol does not have sufficient public key architecture for authentication. Thus there is

fib
no way for S to become convinced that B |« A <—■¥ B. This seems to correspond again to a
masquerading attack, in which the intruder I poses as B and convinces A that he shares a key with

B rather than /.
When checking responsibility, we find that under reasonable assumptions the first three messages

(as modified) will satisfy honesty, while because of the belief problem above, the fourth message
Tib

cannot satisfy the honesty property, since A will interpret S's message as meaning S |« A <—> B,
and S does not believe this. Thus RV affords two opportunities to find this error (although we
admittedly added the third belief goal only because we suspected that its failure lead to the failure of
the honesty check for the final message). Similarly, the secrecy property fails for the final message,
because since S is not convinced that Rb is really a shared key for A and P, the maysee rules do

not allow us to infer that S |= A maysee Rb.

16

4 Comparison

In this paper we have highlighted the approaches of two fully-automated protocol analysis tools,
BRUTUS and RVChecker, by presenting their analyses of two cryptographic protocols. Since both
tools found flaws in both protocols, we attempt to sort through the advantages and disadvantages
of each. In the next section, we suggest a heuristic for their combination, exploiting the advantages

of both.
BRUTUS and RVChecker both represent fully-automated protocol analysis techniques; that is,

given a specification, neither tool requires further intervention from the user to complete its analysis,
in contrast to the tools examined in [4]. The speed of both approaches also allows a more interactive
approach in that the protocol and assumptions can be changed and the results analyzed (relatively)
quickly - but both tools require significant knowledge of the underlying model used in analysis;
BRUTUS for the specification of security properties and RVChecker for the interpretation of analysis
results.

System Dolev-
Auth

Yao Flaws
Secrecy

TMN Flaws
Auth/Secrecy Simmons/Key

RVChecker YES NO YES YES
BRUTUS YES YES YES NO

Table 3: Results of protocol analysis. YES indicates that the system identified the flaw.

Table 3 summarizes the results of our comparison. It is interesting to note that while both
BRUTUS and RVChecker found flaws in the TMN and DY protocols, the type of flaws found by
each were somewhat different. For example, while both tools identified the authentication failure in
TMN, RV was able to suggest, without any specific knowledge of the encryption schemes used, that
it may be possible to attack the protocol with non-fresh session keys. And for DY, RV identified
an authentication flaw but even with a reasonable assumption (which holds for a slightly modified
but secure version of the protocol) was unable to identify the security flaw that BRUTUS easily
identified. Therefore, while it might be tempting to claim that each tool always identifies certain
types of flaws, we can see from this small set of protocols that neither tool consistently identifies

the same types of flaws.

5 Combination

In addition to having the advantage of catching more flaws when used in combination, the theory
generation and model-checking approaches seem to present a certain complementarity. Analysis
using theory generation and belief logics, as implemented in REVERE and RVChecker, allows the
identification of critical assumptions which allow or prevent a protocol from meeting its belief goals
or from passing honesty or secrecy checks. Without prior knowledge of protocol flaws, however,
it may be difficult to see how the failure of an assumption can be marshalled into an attack;
further, as in the case of the DY assumptions, it may be difficult to identify which assumptions are
questionable. Using model-checking, as in BRUTUS, yields actual attacks, but especially for lengthy
counterexamples, it can be difficult to discern why the attack works, or what assumptions about
the protocol are being violated.

5.1 A Motivating Example

As an example, in the RVChecker analysis of DY, we were able to find that the secrecy property
fails if B does not believe that A maysee M; however knowing that this is a crucial assumption
does not give us any knowledge of how an attacker might take advantage of it. On the other hand,
with our knowledge of how the attack works, BRUTUS was quickly able to find an attack which
yielded the message; however this does not give us a high level explanation of why the protocol
might have failed. Using RVChecker and BRUTUS in combination, we see that the protocol fails
because B \= A maysee M and we are given an example of how this flaw can be utilized to yield

an error.
Further, the fact that RVChecker needed both assumptions B \= A maysee M and A \ =

B maysee M brings out the symmetry in the roles that might be played by A and B in an attack.
This means that in BRUTUS, if we want the intruder to take on the role of B, we can introduce
additional runs of A and vice-versa. As discussed in Section 2.3, different combinations of runs of A

and B lead to different attacks (from that mentioned in [3]), one of which is presented in Figure 1.

5.2 A General Methodology for Combined Analysis

In general, we can think of the following two ways to combine these approaches:

1. From Assumptions to Counterexamples: We can use RVChecker to identify crucial assump-
tions, and then use our knowledge of these assumptions to search for counterexamples in

BRUTUS.

2. From Counterexamples to Assumptions: We can search for counterexamples in BRUTUS and
use this knowledge to isolate important assumptions in RVChecker.

In this section, we present short heuristics that are suggested by the previous example. In the next
section, we show more examples that support these heuristics.

5.2.1 Assumptions to Counterexamples

To see how to move from RVChecker analysis to counterexamples in BRUTUS, observe that if an
assumption held by principal A is both dubious and crucial for satisfaction of some property, then

it most likely falls under one of two cases:

1. A believes something about her own behavior; in this case, we can use BRUTUS to search for
counterexamples in which the intruder plays the role of A by modeling extra sessions of the
other principals.

2. A believes something about the behavior of another principal B, in which case we allow the
intruder to play the role of B in our analysis with BRUTUS by modeling extra sessions of A.

In the protocols presented here, the counterexamples that were found by BRUTUS can be motivated
in this fashion by failures found using RVChecker. For example, the extra assumptions needed for
secrecy in Dolev-Yao point to ways in which extra sessions of A or B can be utilized to generate

an attack; we apply this heuristic to the TMN protocol in Section 5.3.

18

5.2.2 Counterexamples to Assumptions

In the second case, we would like to use RYChecker to determine which of a, protocol designer's
assumptions about a protocol fail in a counterexample generated by BRUTUS. To combine the tools
in this direction, we model the entire counterexample trace as a protocol in RYChecker; note that
this model will have the intruder I involved as a participating principal. We then proceed to add
assumptions about each of the principals until the goal properties (secrecy, honesty, authentication,
etc.) become satisfied. Some of these assumptions will be about I. The assumptions held about
I when he plays the role of principal Q will then indicate assumptions that the protocol designer
either explicitly or implicitly made about Q and that / has used to subvert the protocol. Thus
we can identify the faulty assumptions, which will hopefully lead to a better understanding and
possibly a simple fix to the protocol.

5.3 More examples: DY attack and TMN

In this section, we show how the methodology outlined in the previous section can be applied to
the two protocols we have studied.

5.3.1 DY Assumptions from Attack

Section 5.1 indicates how RYChecker can be used to guide BRUTUS by indicating which sessions
to model. Going the other way, we can also model the attack produced by BRUTUS as a protocol
in RYChecker and analyze this protocol to determine what assumptions about the intruder are
necessary to satisfy the secrecy properties. Thus we model the second attack listed in Section 2 as
a protocol with six messages, the first two between A and B and the last four between A and /,
and attempt to satisfy the secrecy properties. In addition to the properties listed in Section 3.3.1
and the necessary assumptions about /'s ID and public key, we find that these assumptions are
necessary to satisfy secrecy:

I \= I maysee M I \= B maysee M B \= I maysee M

This pinpoints the assumption that both principals, particularly B must believe that it is safe for
the recipient to see the message M, when in fact because of the lack of authentication it could
potentially be an intruder receiving the message. This gives us some high-level insight into what
went wrong with the design of the protocol.

5.3.2 TMN

We also applied both heuristics to the TMN protocol. In our analysis with RYChecker (Section
3.3.2) we found that it was necessary either to change the protocol or allow the server S to use

pi,

inappropriate interpretation rules to satisfy the goal S \= A <—> B; and that to satisfy secrecy, we
required the additional assumption that S |= A maysee Rb. So following rule 2 of our heuristic,
we can model an extra session of S in BRUTUS and allow I to play both A and B: the result is the
attack shown in Figure 4, in which / manages to retrieve Ra from the server. Thus we arrive at the
conclusion that the lack of authentication in this protocol results in inappropriate interpretation of
messages and inappropriate assumptions that can be marshalled into an attack by /.

Going in reverse, we can also identify these interpretation rule errors and faulty assumptions
by modeling the trace from Figure 4 as a protocol and attempting to satisfy the secrecy goals. Of
particular interest is the secrecy of the message which I receives from S revealing Rb. To achieve the

19

goal S |= P maysee {Rb}Ri, we must satisfy the sub-goals S \= I maysee Rb and S |= S i—> I.
The first can only be satisfied by assumption, which reveals our first broken assumption - in the
original protocol this translates to S |= A maysee Rb, when 5 has no proof that the key is actually
intended for A. The second sub-goal can only be satisfied by forming interpretation rules that do
not follow the patterns specified in [6], since S must believe an unauthenticated message from I.
It follows that in the original protocol S must believe unauthenticated messages from A and B,
which highlights the second error in the protocol, that is, the lack of proper authentication.

Thus, in both cases we are able to apply our heuristics to the TMN protocol, producing a more
complete analysis through the combination of the tools than we were able to produce with either
alone; in addition, the combination of the tools is able to catch more errors.

6 Concluding Remarks

In this paper, we have compared the approaches and capabilities of two cryptographic protocol

analysis tools - BRUTUS and RVChecker - by analyzing two security protocols with known flaws.

Neither tool isolated all of the flaws in these protocols, but each tool missed different flaws; the
complementary nature of their approaches suggested that it might be possible to combine these

tools resulting in a more powerful yet still fully automated approach to formal protocol analysis.
We do not claim that the methods suggested here for combining these two approaches are rigorous
or complete, however, these methods of combination represent a beginning. Future work could see
how they can be formalized and extended beyond the two protocols presented.

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on

Computer Systems, 8(l):18-36, 1990.

[2] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[3] D. Dolev and A. Yao. On the security of public-key protocols. Communications of the ACM,

29(l):198-208,1983.

[4] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.

Journal of Cryptology, 7(2):79-130, 1994.

[5] D. Kindred and J.M. Wing. Fast, automatic checking of security protocols. In Second
USENIX Workshop on Electronic Commerce, pages 41-52, Oakland, California, November

1996. USENIX.

[6] Darrell Kindred. Theory Generation for Security Protocols. PhD thesis, Carnegie Mellon

University, 1999.

[7] G. Lowe. Breaking and Fixing the Needham-Schroeder public-key protocol using FDR. In

Proceedings of TACAS'96, LNCS 1055, pages 147-166, 1996.

[8] Will Marrero, Ed Clarke, and Somesh Jha. Verifying Security Protocols with Brutus, to be

submitted to ACM Transactions on Software Engg. and Methodology.

20

[9] J.C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Cryptographic Protocols
Using Murphi. In Proceedings of the IEEE Synip. Security and Privacy. Oakland, pages 141—
153, 1997.

[10] L. Paulson. The Inductive Approach to verifying Cryptographic Protocols. Journal of Com-
puter Security, 6:85-128, 1998.

[11] Makoto Tatebayashi, Ntsume Matsuzaki. and David B. Newman, Jr. Key distribution protocol
for digital mobile communication systems. In Proceedings of CRYPTO'89, pages 324-334.

[12] T. Woo and S. Lam. Verifying authentication protocols: methodology and example. In Inter-
national Conference on Network Protocols, San Francisco, CA, USA, October 1993.

21

